Section 8.5 Equations Reducible to Quadratic
Some higher exponent equations can be solved using the method of quadratics if we can make a useful substitution.

Here: $x^{4}-9 x^{2}+8=0$ we have a $4^{\text {th }}$ degree equation. Notice that if we made a substitution of $u=x^{2}$ that we could rewrite the original as $u^{2}-9 u+8=0$.

$$
\begin{array}{ll}
(u-8)(u-1)=0 \\
u=8 & u=1
\end{array}
$$

This can be unFOILed easily to give us $x^{2}=8 \quad x^{2}=1$

$$
\begin{array}{r}
x= \pm 2 \sqrt{2} \quad x= \pm 1 \\
x \in\{ \pm 2 \sqrt{2}, \pm 1\}
\end{array}
$$

Consider: $x-3 \sqrt{x}=4$. Here we could use $u=\sqrt{x}$ so $u^{2}=x$ and our equation

$$
u^{2}-3 u=4
$$

$$
u^{2}-3 u-4=0
$$

$$
(u-4)(u+1)=0
$$

becomes: $u=4 \quad u=-1$
$\begin{array}{ll}\sqrt{x}=4 & \sqrt{x}=-1 \\ x=16 & x=1\end{array} \quad$ We squared each side to get to the next line.

Because we "squared each side" we could have introduced roots that do not work. We need to check.
$x-3 \sqrt{x}=4$
$x-3 \sqrt{x}=4$
$16-3 \sqrt{16}=4$
$1-3 \sqrt{1}=4$
$16-12=4$
$1-3=4 \quad$ So only good solution is $x=16$.
$4=4$
$-2=4$
true
false

Example 2, page 530
Given $f(x)=\left(x^{2}-1\right)^{2}-\left(x^{2}-1\right)-2$. Find the x-intercepts. x-intercepts are when y (or in our case $f(x))=0$.

$$
\left(x^{2}-1\right)^{2}-\left(x^{2}-1\right)-2 \stackrel{\text { set }}{=} 0
$$

We let $u=x^{2}-1$ and get $\quad u^{2}-u-2=0$

$$
\text { Factoring we get: } \begin{aligned}
& (u-2)(u+1)=0 \\
& u=2 \quad u=-1
\end{aligned}
$$

$$
\begin{array}{ll}
u=2 & u=-1 \\
x^{2}-1=2 & x^{2}-1=-1
\end{array}
$$

$$
\text { Then } x^{2}=3 \quad x^{2}=0
$$

$$
x= \pm \sqrt{3} \quad x=0
$$

$$
x \in\{0, \pm \sqrt{3}\}
$$

Example $m^{-2}-6 m^{-1}+4=0$
The significant thing is that you recognize that $\left(m^{-1}\right)^{2}=m^{-2}$
So you would let $u=m^{-1}$ and substitute.
Toward the end of this problem you will get $u=3 \pm \sqrt{5}$.
That means
$m^{-1}=3 \pm \sqrt{5}$
$\frac{1}{m}=(3 \pm \sqrt{5})$ we have a single item on each side, we can turn the equation over.
$m=\frac{1}{3 \pm \sqrt{5}} \quad$ now we rationalize....
$m=\frac{1}{3 \pm \sqrt{5}} \cdot \frac{3 \mp \sqrt{5}}{3 \mp \sqrt{5}}$
$m=\frac{3 \mp \sqrt{5}}{9-5}$
$m=\frac{3 \mp \sqrt{5}}{4}$
Example 5 page 532 is similar.
$t^{\frac{2}{5}}-t^{\frac{1}{5}}-2=0$
Let
$u=t^{\frac{1}{5}}$
and it follows the previous example.
$f(x)=a(x-h)^{2}+k$ is the graphing form of a quadratic function.
This is to quadratic functions what $y=m x+b$ is to straight lines.
If $a>0$, the function opens up and thus has a minimum value.
If $a<0$, the function opens down and has a maximum value.
The maximum (or minimum) value is called the "vertex" of the function.
The vertex has coordinates (h, k)
Comparing to the standard $f(x)=x^{2}$, a function with $0<a<1$ opens wider.
Comparing to the standard $f(x)=x^{2}$, a function with $a>1$, opens narrower.

The widest graph has equation $g(x)=\frac{1}{2} x^{2}$.
The "middle" graph has equation $f(x)=x^{2}$
The narrow graph has equation $h(x)=2 x^{2}$

The "axis of the function" is the function's vertical center. This axis has the equation $x=h$. Both of these functions have $x=2$ as their axis:

The top function is: $f(x)=(x-2)^{2}+3$.
The bottom function is: $g(x)=-(x-2)^{2}+3$.
Notice that the bottom function open downward since the " a " number is negative one.

